Optimal Odd Arm Identification with Fixed Confidence

نویسندگان

  • Gayathri R. Prabhu
  • Srikrishna Bhashyam
  • Aditya Gopalan
  • Rajesh Sundaresan
چکیده

The problem of detecting an odd arm from a set of K arms of a multi-armed bandit, with fixed confidence, is studied in a sequential decision-making scenario. Each arm’s signal follows a distribution from a vector exponential family. All arms have the same parameters except the odd arm. The actual parameters of the odd and non-odd arms are unknown to the decision maker. Further, the decision maker incurs a cost whenever the decision maker switches from one arm to another. This is a sequential decision making problem where the decision maker gets only a limited view of the true state of nature at each stage, but can control his view by choosing the arm to observe at each stage. Of interest are policies that satisfy a given constraint on the probability of false detection. An information-theoretic lower bound on the total cost (expected time for a reliable decision plus total switching cost) is first identified, and a variation on a sequential policy based on the generalised likelihood ratio statistic is then studied. Thanks to the vector exponential family assumption, the signal processing in this policy at each stage turns out to be very simple, in that the associated conjugate prior enables easy updates of the posterior distribution of the model parameters. The policy, with a suitable threshold, is shown to satisfy the given constraint on the probability of false detection. Further, the proposed policy is asymptotically optimal in terms of the total cost among all policies that satisfy the constraint on the probability of false detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Best Arm Identification with Fixed Confidence

We give a complete characterization of the complexity of best-arm identification in one-parameter bandit problems. We prove a new, tight lower bound on the sample complexity. We propose the ‘Track-and-Stop’ strategy, which we prove to be asymptotically optimal. It consists in a new sampling rule (which tracks the optimal proportions of arm draws highlighted by the lower bound) and in a stopping...

متن کامل

Pure Exploration in Infinitely-Armed Bandit Models with Fixed-Confidence

We consider the problem of near-optimal arm identification in the fixed confidence setting of the infinitely armed bandit problem when nothing is known about the arm reservoir distribution. We (1) introduce a PAC-like framework within which to derive and cast results; (2) derive a sample complexity lower bound for near-optimal arm identification; (3) propose an algorithm that identifies a nearl...

متن کامل

Best-Arm Identification in Linear Bandits

We study the best-arm identification problem in linear bandit, where the rewards of the arms depend linearly on an unknown parameter θ and the objective is to return the arm with the largest reward. We characterize the complexity of the problem and introduce sample allocation strategies that pull arms to identify the best arm with a fixed confidence, while minimizing the sample budget. In parti...

متن کامل

Tight (Lower) Bounds for the Fixed Budget Best Arm Identification Bandit Problem

We consider the problem of best arm identification with a fixed budget T , in theK-armed stochastic bandit setting, with arms distribution defined on [0, 1]. We prove that any bandit strategy, for at least one bandit problem characterized by a complexityH , will misidentify the best arm with probability lower bounded by exp ( − T log(K)H ) , whereH is the sum for all sub-optimal arms of the inv...

متن کامل

Pure Exploration in Episodic Fixed-Horizon Markov Decision Processes

Multi-Armed Bandit (MAB) problems can be naturally extended to Markov Decision Processes (MDP). We extend the Best Arm Identification problem to episodic fixed-horizon MDPs. Here, the goal of an agent interacting with the MDP is to reach a high confidence on the optimal policy in as few episodes as possible. We propose Posterior Sampling for Pure Exploration (PSPE), a Bayesian algorithm for pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.03682  شماره 

صفحات  -

تاریخ انتشار 2017